Теория сложности
Теория сложности обеспечивает методологию анализа вычислительной сложности различных криптографических методов и алгоритмов. Она сравнивает криптографические методы и алгоритмы и определяет их безопасность. Теория информации сообщает нам о том, что все криптографические алгоритмы (кроме одноразовых блокнотов) могут быть взломаны. Теория сложности сообщает, могут ли они быть взломаны до тепловой смерти вселенной.
Сложность алгоритмов
Сложность алгоритма определяется вычислительными мощностями, необходимыми для его выполнения. Вычислительная сложность алгоритма часто измеряется двумя параметрами: T (временная сложность) и S (пространственная сложность, или требования к памяти). И T, и S обычно представляются в виде функций от n, где n - это размер входных данных. (Существую и другие способы измерения сложности: количество случайных бит, ширина канала связи, объем данных и т.п.)
Обычно вычислительная сложность алгоритма выражается с помощью нотации "О большого", т.е описывается порядком величины вычислительной сложности. Это просто член разложения функции сложности, быстрее всего растущий с ростом n, все члены низшего порядка игнорируются. Например, если временная сложность данного алгоритма равна 4n2+7n+12, то вычислительная сложность порядка n2, записываемая как O(n2).
Временная сложность измеренная таким образом не зависит от реализации. Не нужно знать ни точное время выполнения различных инструкций, ни число битов, используемых для представления различных переменных, ни даже скорость процессора. Один компьютер может быть на 50 процентов быстрее другого, а у третьего шина данных может быть в два раза шире, но сложность алгоритма, оцененная по прядку величины, не изменится. Это не жульничество, при работе с алгоритмами настолько сложными, как описанные в этой книге, всем прочим можно пренебречь (с точностью до постоянного множителя) в сравнении со сложностью по порядку величины.
Эта нотация позволяет увидеть, как объем входных данных влияет на требования к времени и объему памяти. Например, если O= O(n), то удвоение входных данных удвоит и время выполнения алгоритма. Если O=О(2n), то добавление одного бита к входным данным удвоит время выполнения алгоритма.
Обычно алгоритмы классифицируются в соответствии с их временной или пространственной сложностью. Алгоритм называют постоянным, если его сложность не зависит от n: O(1). Алгоритм является линейным, если его временная сложность O(n). Алгоритмы могут быть квадратичными, кубическими и т.д. Все эти алгоритмы - полиномиальны, их сложность - O(nm), где m - константа. Алгоритмы с полиномиальной временной сложностью называются алгоритмами с полиномиальным временем.
Алгоритмы, сложность которых равна О(tf(n)), где t - константа, большая, чем 1, а f(n) - некоторая полиномиальная функция от n, называются экспоненциальными. Подмножество экспоненциальных алгоритмов, сложность которых равна О(cf(n)), где где c - константа, а f(n) возрастает быстрее, чем постоянная, но медленнее, чем линейная функция, называется суперполиномиальным.
В идеале, криптограф хотел бы утверждать, что алгоритм, лучший для взлома спроектированного алгоритма шифрования, обладает экспоненциальной временной сложностью. На практике, самые сильные утверждения, которые могут быть сделаны при текущем состоянии теории вычислительной сложности, имеют форму "все известные алгоритмы вскрытия данной криптосистемы обладают суперполиномиальной временной сложностью". То есть, известные нам алгоритмы вскрытия обладают суперполиномиальной временной сложностью, но пока невозможно доказать, что не может быть открыт алгоритм вскрытия с полиномиальной временной сложностью. Развитие теории вычислительной сложности возможно когда-нибудь позволит создать алгоритмы, для которых существование алгоритмов с полиномиальным временем вскрытия может быть исключено с математической точностью.
С ростом n временная сложность алгоритмов может стать настолько огромной, что это повлияет на практическую реализуемость алгоритма. В Табл. 11-2 показано время выполнения для различных классов алгоритмов при n равном одному миллиону. В таблице игнорируются постоянные величины, но показано, почему это можно делать.
Табл. 11-2
Время выполнения для различных классов алгоритмов
Класс |
Сложность |
Количество операций для n=106 |
Время при 106 операций в секунду |
Постоянные |
О(1) |
1 |
1 мкс |
Линейные |
О(n) |
106 |
1 с |
Квадратичные |
О(n2) |
1012 |
11.6 дня |
Кубические |
О(n3) |
1018 |
32000 лет |
Экспоненциальные |
О(2n) |
10301030 |
В 10301006 раз больше, чем время существования вселенной |
При условии, что единицей времени для нашего компьютера является микросекунда, компьютер может выполнить постоянный алгоритм за микросекунду, линейный - за секунду, а квадратичный - за 11.6 дня. Выполнение кубического алгоритма потребует 32 тысяч лет, что в принципе реализуемо, компьютер, конструкция которого позволила бы ему противостоять следующему ледниковому периоду, в конце концов получил бы решение. Выполнение экспоненциального алгоритма тщетно, независимо от экстраполяции роста мощи компьютеров, параллельной обработки или контактов с инопланетным суперразумом.
Взглянем на проблему вскрытия алгоритма шифрования грубой силой. Временная сложность такого вскрытия пропорциональна количеству возможных ключей, которое экспоненциально зависит от длины ключа. Если n - длина ключа, то сложность вскрытия грубой силой равна О(2n). В разделе 12.3 рассматривается дискуссия об использовании для DES 56-битового ключа вместо 112-битового. Сложность вскрытия грубой силой при 56-битовом ключе составляет 256, а при 112-битовом ключе - 2112. В первом случае вскрытие возможно, а во втором - нет.